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ABSTRACT: Convolutional neural networks (CNNs) have recently attracted great attention in geoscience because of
their ability to capture nonlinear system behavior and extract predictive spatiotemporal patterns. Given their black-box
nature, however, and the importance of prediction explainability, methods of explainable artificial intelligence (XAI) are
gaining popularity as a means to explain the CNN decision-making strategy. Here, we establish an intercomparison of
some of the most popular XAI methods and investigate their fidelity in explaining CNN decisions for geoscientific applica-
tions. Our goal is to raise awareness of the theoretical limitations of these methods and to gain insight into the relative
strengths and weaknesses to help guide best practices. The considered XAI methods are first applied to an idealized attri-
bution benchmark, in which the ground truth of explanation of the network is known a priori, to help objectively assess
their performance. Second, we apply XAI to a climate-related prediction setting, namely, to explain a CNN that is trained
to predict the number of atmospheric rivers in daily snapshots of climate simulations. Our results highlight several impor-
tant issues of XAI methods (e.g., gradient shattering, inability to distinguish the sign of attribution, and ignorance to zero
input) that have previously been overlooked in our field and, if not considered cautiously, may lead to a distorted picture
of the CNN decision-making strategy. We envision that our analysis will motivate further investigation into XAI fidelity
and will help toward a cautious implementation of XAI in geoscience, which can lead to further exploitation of CNNs and
deep learning for prediction problems.

KEYWORDS: Artificial intelligence; Classification; Data science; Deep learning; Model interpretation and visualization;
Neural networks

1. Introduction

In recent years, convolutional neural networks (CNNs) and
deep learning in general have seen great application in a pleth-
ora of problems in geoscience (Lary et al. 2016; Karpatne et al.
2019; Reichstein et al. 2019), ranging from solid Earth science
(Bergen et al. 2019), marine science and hydrology (Shen 2018;
Sit et al. 2020) to climate science and meteorology (Barnes et al.
2019; Rolnick et al. 2019; Ham et al. 2019). The popularity of
CNNs has risen mainly because of their ability to capture non-
linear system behavior and to extract predictive spatiotemporal
patterns (LeCun et al. 2015), which makes them of particular
interest to geoscientists. Another important reason is the in-
creasing availability of observational and simulated data in
this decade (Overpeck et al. 2011; Guo 2017; Agapiou 2017;
Reinsel et al. 2018) that helps to meet the requirement to train
CNNs with large datasets.

Despite their potential, an important issue about the appli-
cation of CNNs in the geosciences is their black-box nature,
which makes it hard for scientists to interpret predictions
and to assess the model from a physical perspective, that is,

beyond using prediction performance as the only criterion.
The interpretability issue is considered a key issue for deep
learning in general, and it has prompted the emergence of a
new subfield in computer science, namely, explainable artifi-
cial intelligence (XAI; Buhrmester et al. 2019; Tjoa and Guan
2019; Das and Rad 2020). The goal of XAI methods is to ex-
plain, in a postprediction setting (typically referred to as post
hoc explanation), the decision strategy of a model that other-
wise is inherently not interpretable. One common way to do
this is to highlight the most important variables in the input
space (typically referred to as features) that helped the model
to make a specific prediction. These methods are referred to
as “local” XAI methods because they focus on a specific pre-
diction, in contrast to “global” XAI methods that identify im-
portant features across all samples (Buhrmester et al. 2019).

XAI methods have already proven to be of great utility for
explaining black-box models in computer science and beyond,
and they have also seen recent application in geoscience
(McGovern et al. 2019; Ebert-Uphoff and Hilburn 2020;
Toms et al. 2020; Mamalakis et al. 2022b). Specifically, recent
work shows how XAI can help to calibrate model trust
(Sonnewald and Lguensat 2021; Mayer and Barnes 2021;
Hilburn et al. 2021; Keys et al. 2021), to identify ways to fine-
tune models that are performing poorly (Ebert-Uphoff and
Hilburn 2020), and also to accelerate learning new science
(Barnes et al. 2020; Toms et al. 2021). The results of these re-
cent studies indicate that XAI can be a real game changer for
prediction and classification problems (Mamalakis et al. 2022b)
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and can help to further exploit the potential of deep learning in
geoscience in our era of big data.

Despite the above, many XAI methods have been shown to
exhibit theoretical and practical limitations in explaining
black-box models (Sundararajan et al. 2017; Kindermans et al.
2019; Ancona et al. 2018; Rudin 2019; Dombrowski et al.
2022; Zhou et al. 2022). Moreover, XAI results are not typically
assessed on the basis of a ground truth of explanation but rather
are based on the subjective evaluation by the analyst/scientist
about whether the explanation is physically reasonable. How-
ever, even if an explanation makes physical sense to a human,
it does not necessarily mean that this is the strategy the model
in question is actually using (and vice versa). In other words,
the human perception of an explanation alone is not a solid
criterion for assessing its trustworthiness. Also, what physi-
cally makes sense depends on the a priori understanding of
the problem that the scientist has and, thus, might be differ-
ent across individuals, especially in problem settings of high
levels of complexity. The theoretical and practical limitations
of XAI methods, together with the issue of subjectivity in
their assessment that may propagate individual biases, have
been recognized in the literature (Leavitt and Morcos 2020)
and call for a more objective and systematic investigation of
XAI methods’ fidelity for a range of different applications
and model architectures.

In an effort to introduce more objectivity in the assessment
of XAI methods for geosciences, our group proposed a
generic approach to develop simple attribution benchmark
datasets for benchmarking XAI methods (Mamalakis et al.
2022a). Attribution benchmark datasets consist of synthetic
inputs and outputs, where the functional relationship between
the two is known. This allows for deriving the ground truth of
what the explanation of the network should look like for each
prediction. In this way, the assessment of XAI methods is no
longer based on subjective criteria, but rather it is based on the
direct comparison of the XAI results with the ground truth of
the explanation. As a first example, Mamalakis et al. (2022a)
generated a large attribution benchmark inspired from a cli-
mate prediction setting and applied XAI methods to explain
the predictions of a fully connected neural network. Other
studies have also developed similar benchmarks in the field
of computer science (Arras et al. 2021; Zhou et al. 2022).

Here, we build on previous studies that deal with the assess-
ment and the benchmarking of XAI methods and we shift our
focus to convolutional neural networks, with the aim to inves-
tigate XAI fidelity in CNN applications in the geosciences.
Our goal is to raise awareness of the theoretical limitations of
XAI methods and gain insight into the relative strengths and
weaknesses to help guide best practices. We focus on some of
the most popular XAI methods (e.g., Gradient, Smooth Gra-
dient, Integrated Gradients, Layerwise Relevance Propaga-
tion, among many others)1 and apply them to explain the

predictions of CNNs for two specific classification problems.
First, we consider an idealized attribution benchmark dataset,
where the CNN is trained to classify pictures of circular and
square frames depending on which class of frames covers
more area. The simplicity of the prediction task allows us to
derive the ground truth of the explanation and assess XAI
methods in an objective manner. Thus, this first problem helps
us to gain insight into limitations that might be overlooked in
cases for which no ground truth of the explanation is avail-
able. In the second problem, we consider a prediction setting
with a climate-related task, namely, predicting the number of
the atmospheric rivers in daily snapshots of climate simula-
tions. In this setting there is no ground truth of the explana-
tion, as is the case in most geophysical studies. The second
problem aims to validate our insights about XAI in a more cli-
mate-related setting and to illustrate how explanations should
be regarded and interpreted so as to avoid reaching false con-
clusions about the strategy of the network.

In section 2, we introduce the two datasets, discuss CNN archi-
tectures and prediction performance, and describe the XAI meth-
ods considered in the study. In section 3, we present and discuss
the results of the XAI methods when applied to explain the CNN
decision strategy, and in section 4, we state our conclusions.

2. Data and methods

a. Synthetic attribution benchmark

For our first classification problem we develop and use a
synthetic attribution benchmark dataset to objectively assess
XAI methods. An attribution benchmark consists of a syn-
thetic input X and a synthetic output Y, with the latter being a
known function F of the former (Mamalakis et al. 2022a). On
the functional form of F, Mamalakis et al. (2022a) noted that
the function F can be of any arbitrary choice (depending on
what type of network the analyst wants to benchmark: fully
connected, a CNN, etc.), as long as it has such a form so that
the attribution of any output to the corresponding input is ob-
jectively derivable.

We herein consider an idealized classification task that is
specifically designed for CNN applications and is inspired by
remote sensing tasks in geosciences where spatial patterns
(such as cloud objects, weather fronts, etc.) need to be tracked
and extracted (see, e.g., Hilburn et al. 2021). We generate a
series of inputs that consist of 2D (single channel) images
where circular and square frames are present, and we task the
CNN to classify each image depending on which class of
frames covers more area (i.e., has more pixels). More specifi-
cally, each input image consists of 65 3 65 pixels (i.e., a total
of d5 4225 pixels), with the input features being binary varia-
bles, X ∈ {0, 1}d. If a pixel i for a sample n belongs to a circular
or a square frame then xi,n 5 1 (see, e.g., the dark-red pixels
of the square frame in the top-left plot of Fig. 1), whereas
xi,n 5 0 otherwise; see Fig. 1 for some examples of the syn-
thetic input images. The number of frames per class, the size
of the frames, and the positioning of the frames are random in
each image, and no frame overlap is allowed to occur. In
terms of the output of the dataset, two separate classes into

1 Ed. Note: Standard American Meteorological Society style is
to lowercase method names, but for consistency with previous
XAI literature and to allow easy visual identification in this paper,
the authors’ use of capitalization in XAI method names will be
retained.
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which all input images are classified are defined: in class 1, the
circular frames in the image cover more area than the square
frames; in class 2, the square frames in the image cover more
area than the circular frames. Thus, the synthetic output of
the dataset is a series of logical values indicating to which class
each input image corresponds, and the network is trained to
classify the images between the two classes.

By choosing this simple, idealized classification task we
achieve three things. First, for any model to be able to cor-
rectly classify these synthetic images, it needs to be able to ex-
tract spatial patterns of different shapes. This makes a CNN
(our study’s focus) be the most suitable type of network to ad-
dress this classification task (LeCun et al. 2015). Second, the
simplicity of the current task makes it possible for us to objec-
tively derive the ground truth of the attribution: pixels in an

image that belong to any circular or square frame contribute
positively or negatively, respectively, to the probability that
class 1 is true and negatively or positively, respectively, to the
likelihood of class 2; note that this is valid when considering a
blank image as the baseline. Third, an immediate conse-
quence of the latter rule of attribution is that (as we will see
in Figs. 3–6, described in more detail below) there are many
cases in which both positive and negative contributions ap-
pear in the same explanation. This means that with this
benchmark, we can assess which XAI methods can disentan-
gle the sign of the contribution of specific input patterns to
the output, an aspect that is often overlooked (Kohlbrenner
et al. 2020). In summary, this synthetic dataset fits our current
scope to objectively assess XAI for CNN applications; for the
connection of this dataset with the mathematical framework

FIG. 1. Examples of input of the synthetic attribution benchmark dataset. Details about this synthetic dataset are provided in section 2a.
In many cases, the answer as to which class of frames covers more area is easy to get simply with visual inspection. However, there are
also cases in which the answer is more difficult to disentangle (such as sample n 5 356494 or 450345). The testing performance of the
trained CNN (see architecture in Fig. 2a, below) was slightly above 99% accuracy, which is higher performance than what a human eye
would do. The examples highlighted in the black-outlined box are from the testing dataset and are analyzed further in section 3
(see Figs. 3 and 4, below).
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of additively separable functions introduced by Mamalakis
et al. (2022a), see appendix A.

The CNN that we use for this classification task consists
of three pairs of convolutional and max pooling layers fol-
lowed by three fully connected layers (Fig. 2a). The output
layer consists of two neurons, with the first or the second re-
spectively calculating the likelihood that the circular or
square frames cover more area. We use rectified linear unit
(ReLU) activations in all layers apart from the output layer,
where we use the softmax function. The CNN is trained us-
ing 450 000 samples, and 50 000 samples are used for testing.
The testing classification accuracy is slightly above 99%;
that is, less than 1% of the testing images are misclassified
by the network. The reason that we chose to generate such
an unrealistically high sample size is so that the CNN can
learn almost perfectly the underlying function F. Only un-
der this condition is it fair to use the ground truth of attribu-
tion as a benchmark for the XAI methods since any
deviation between the two should mostly arise from XAI
limitations and to a lesser degree from poor training of the

network. However, we note that discrepancies between
XAI output and the ground truth shall always exist because
the CNN is a close approximation (and not identical) to the
function F.

b. ClimateNet dataset

As a second application, we employ a more climate-related
task where there is no ground truth of the explanation avail-
able (as is the case in most geophysical studies). This second
task aims to validate the insights about XAI gained from the
first task in a more climate-related setting. For our second
classification problem we use the ClimateNet dataset (Prabhat
et al. 2021). The ClimateNet dataset is a publicly available
dataset (https://portal.nersc.gov/project/ClimateNet/) that con-
sists of daily outputs of climate simulations from the Commu-
nity Atmospheric Model (CAM5.1). Each daily output includes
snapshots of many different variables like precipitation, verti-
cally integrated precipitable water and temperature and wind
velocities at different pressure levels. Also, for each simulated
day in the ClimateNet dataset a labeled world map is available,

FIG. 2. Specific architectures of the CNNs that were used in the two classification problems
of our study.
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where expert meteorologists and scientists have detected the lo-
cations over which atmospheric rivers (AR: narrow elongated
bands of enhanced water vapor in the atmosphere) and tropical
cyclones occur around the world on that specific day. This la-
beling has currently been done for 456 days of the simulated
historical years 1996–2013, which is the total sample size of the
dataset (see an example of a simulated day in Supplementary
Fig. 1 in the online supplemental material).

We build a CNN to classify these daily snapshots from the
ClimateNet dataset in terms of how many ARs occur on the
corresponding day. More specifically, we use a three-channel
image as our input with zonal and meridional wind velocities
at 850-hPa pressure level and vertically integrated precipita-
ble water constituting the three channels. Based on the expert
labeling that is available in the dataset, the CNN is then
trained to classify the input into three different classes: zero,
one, and two or more ARs occurring on the corresponding
simulated day. The architecture of the CNN consists of four
sets of two convolutional layers and one max pooling layer
followed by two fully connected layers (see Fig. 2b). We use
ReLU activations in all layers of the network apart from the
output layer, where we use the softmax function. The output
layer consists of three neurons, with the first, second, and
third neuron computing the likelihood that zero, one, and two
or more ARs occur on the simulated day, respectively. Be-
cause a size of 456 samples is small to train and test a deep
CNN, we cut each snapshot in the dataset into six equally
sized segments (three segments in each hemisphere; see an
example in Supplementary Fig. 1 in the online supplemental
material). We use simulations in years 1996–2010 for training
and in years 2011–13 for testing, where each input channel
is standardized by using the all-sample and all-pixel mean
and standard deviation of the corresponding variable. The
end result of this preprocessing is that 2370 samples were
used for training, 366 samples were used for testing, and the
input image consists of 192 3 192 3 3 pixels. The trained
CNN exhibits a classification accuracy of 62% for the testing
data.

This climate-related classification task is fairly similar to the
idealized classification task of the previous section in that
both tasks require the adopted model to learn to extract (and
compare or neglect) specific spatial patterns. In the idealized
dataset, the model is required to learn to compare the area of
two different classes of spatial patterns (square and circular
frames), while in the ClimateNet dataset, the model is re-
quired to learn to extract spatial patterns that resemble ARs
but to neglect all other spatial patterns that might be present
(e.g., tropical cyclones). This similarity between the two prob-
lems allows us to validate the XAI insights that are gained
from the idealized task in a similar but more climate-related
second task.

c. XAI methods

For our assessment, we consider some of the most popular
XAI methods for CNNs that have been proposed in the com-
puter science literature. To keep this section as concise as pos-
sible, we only briefly describe how each method explains the

network in the following list (the category that each method
belongs to is provided in parenthesis; see also Table 1). For
more details on the methods’ analytical formulas, the reader
is referred to appendix B and the corresponding studies cited
below.

1) GRADIENT (SENSITIVITY)

This method (Simonyan et al. 2014) assesses the impor-
tance of the input features based on sensitivity. Sensitivity
refers to how much the value of the output will change for a
unit change in a specific feature and is estimated here by the
first partial derivative of the network’s output with respect to
the feature.

2) SMOOTH GRADIENT (SENSITIVITY)

This method (Smilkov et al. 2017) also computes the gradi-
ent, but it does so by averaging the gradients over a perturbed
number of inputs with added noise. This aims to increase the
robustness of the results (i.e., reduce the noise).

3) INPUT*GRADIENT (ATTRIBUTION)

This method (Shrikumar et al. 2016, 2017) assesses the
attribution of the output to the input (see detailed differences
between sensitivity and attribution in appendix C). Attribution
refers to the marginal contribution of an input feature to the
output and is estimated here by multiplying (pixelwise) the
input with the gradient.

4) INTEGRATED GRADIENTS (ATTRIBUTION)

This method (Sundararajan et al. 2017) uses a reference
vector (e.g., for which the network’s output is zero). It then
estimates the contribution of each feature as the product of
the average of the gradients at points along the straight-line
path from the reference point to the input with the distance of
that path. Integrated Gradients is similar to Input*Gradient
but is designed to account for nonlinearities in the model that
is being explained.

5) LRP (ATTRIBUTION)

This method (Bach et al. 2015) propagates the network’s out-
put back to neurons of lower layers, until the input layer is
reached. In the backpropagation phase, the relevance/importance
of each neuron to the output is estimated, based on different
propagation rules. In this study, we consider the most popular
Layerwise Relevance Propagation (LRP) rules: (i) the LRPz

rule (Bach et al. 2015), which distributes the relevance of each
neuron based on the values of the localized preactivations that
are directed to it, (ii) the LRPa1b0 (Bach et al. 2015), which is
similar to LRPz but considers only positive preactivations,
(iii) the LRPcomp (Kohlbrenner et al. 2020), which combines
the two previous rules (it applies the LRPz rule to distribute
the relevance in the fully connected layers of the CNN and the
LRPa1b0 rule in the convolutional layers), and (iv) the
LRPcomp/flat (Bach et al. 2016; Kohlbrenner et al. 2020),
which is similar to LRPcomp but additionally applies a flat rule
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in the very lowest layer(s). The flat rule distributes relevance
uniformly to all connected neurons without considering the
preactivations values.

6) DEEP TAYLOR DECOMPOSITION (ATTRIBUTION)

This method (Montavon et al. 2017) applies a local Taylor
decomposition to decompose each neuron’s relevance to the
neurons of the lower layer. It is applied recursively until
the importance of the input features is obtained. Deep Taylor
is equivalent to LRPa1b0 for networks that use ReLU
activations.

7) PATTERNNET (SIGNAL) AND PATTERNATTRIBUTION

(ATTRIBUTION)

These methods (Kindermans et al. 2018) are based on the
idea that every input image consists of a signal component (all
of the information in the input that is relevant to the predic-
tion task) and a distractor (all of the distracting information
that is irrelevant to the prediction task). The method Pattern-
Net performs a layerwise backprojection of the signal to the
input space. In each layer, the signal is approximated as a
superposition of neuronwise, local signal estimators. This is
done recursively, until the signal of the network’s output in
the input image is estimated. PatternAttribution aims to esti-
mate the attribution of the network’s output to the input (i.e.,
not simply the signal), by applying the same layerwise back-
projection approach, but also considering the weight vector
that connects subsequent layers.

8) DEEP SHAP (ATTRIBUTION)

This method (Lundberg and Lee 2017) approximates the
Shapley values (originally discovered in the field of the coop-
erative game theory; Shapley 1953) for the entire network by
computing the Shapley values for smaller components of the
network and propagating them backward until the input layer
is reached (similar in philosophy to LRP, PatternNet, and
PatternAttribution). Shapley values have been shown to sat-
isfy desired properties with regard to the explanation (e.g.,
local accuracy, missingness, and consistency; Lundberg and
Lee 2017), which is not necessarily the case with other XAI
methods (LRP, Input*Gradient, etc.).

3. Results

In this section, we present the results of applying the XAI
methods first to the synthetic dataset and then to ClimateNet.
We highlight that, for the synthetic dataset, methods Gradi-
ent, Smooth Gradient, and PatternNet are not directly com-
parable to the derived ground truth of attribution, since they
estimate the sensitivity or the signal of the output to the input;
rather than the attribution of the output to the input (see
appendix C for the difference between sensitivity and attri-
bution). However, they are included in the intercompa-
rison because of their popularity and for the sake of
completeness.

a. Synthetic dataset

In Figs. 3 and 4, we explore the CNN strategy for two sam-
ples from the synthetic dataset. In both samples, two square
frames and one circular frame are present. In Fig. 3, the
square frames cover more area (specifically 270 pixels vs 180),
and in Fig. 4, the circular frame covers more area (specifically
342 pixels vs 255), while in both cases, the CNN has correctly
classified the input images. In terms of the ground truth of at-
tribution in Fig. 3, we expect that the pixels of the square
frames increased the certainty of the network (i.e., increased
the likelihood of class 2), while the pixels of the circular frame
decreased it (this is valid when considering a blank image as
our baseline). That is, if it were not for the circular frame, the
certainty of the model would have been higher. The opposite
is true in Fig. 4.

As is evident in both figures, despite all methods being ap-
plied to explain the same exact prediction, different XAI
methods lead to different explanations. Specifically, despite
most methods identifying the frames as important features,
some methods exhibit relative noisier results, and there is no
consensus about the sign of the attribution. If this were a clas-
sification problem about which we knew nothing (as could be
the case for a typical geoscience setting), it would be difficult
to reach certain conclusions about the decision strategy of the
network. However, by knowing the ground truth of attribu-
tion in these examples, we can assess the fidelity of each of
the methods and also understand the lack of consensus in the
results.

First, Gradient is shown to produce somewhat noisy patterns.
For shallow networks, some studies suggest that the gradient
resembles a Brownian motion and exhibits spatial coherence,
while for deeper networks the gradient converges to white
noise and the spatial autocorrelation vanishes (Balduzzi et al.
2017). This phenomenon is known in the computer science
literature as “gradient shattering” (Balduzzi et al. 2017). Al-
though our network is not very deep (less than 10 layers),
the noise in the results of the gradient can be partially attrib-
uted to gradient shattering. Despite this, one can see that
the square or circular frames are respectively highlighted with
mostly positive or negative values in Fig. 3, whereas the oppo-
site results are shown in Fig. 4, which is consistent with what
we expect in both cases. Moreover, in both figures, the gra-
dient vanishes away from the frames. This means that the
CNN has correctly learned that if one were to increase the
value of any pixel away from the frames this would not affect
the chances of either class, because isolated pixels constitute
neither a circular nor a square frame. Smooth Gradient pro-
duces very different results, namely, mostly negative gradients
in Fig. 3 and mostly positive gradients in Fig. 4.

Results from the Input*Gradient and Integrated Gradients
methods are very similar and close to the ground truth of at-
tribution (pattern correlation with the ground truth is on the
order of 0.5–0.6 in all examples). In Fig. 3 the square or circu-
lar frames are highlighted with mostly positive or negative at-
tributions, respectively, whereas in Fig. 4 we obtain the
opposite results. Pixels outside the frames receive zero attri-
bution. However, both methods may suffer from the effects of
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gradient shattering in the same way as Gradient, since they
are directly connected to the latter [see Eqs. (B3) and (B4) in
appendix B]. Indeed, as we can see in Figs. 3 and 4, attribu-
tions exhibit some level of noise, which for a deeper network

might be so high that it can severely limit comprehensibility
(e.g., see Fig. 7, below).

The PatternNet method correctly highlights all three frames
(as well as some pixels away from the frames) as important in

FIG. 3. Explanations from different XAI methods of the strategy of the CNN for the synthetic dataset and sample
453567. The CNN has successfully classified this image to class 2; i.e., the square frames cover more area (area: 270)
than the circular frames do (area: 180). XAI methods are applied to explain the successful prediction. For each heat
map, we divided all values by the maximum (in absolute terms) value. The ground truth of attribution is derived using
a blank image (image with zeros) as a baseline.
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containing information (a signal) for the decision of the CNN.
PatternAttribution correctly highlights the two square frames
in Fig. 3 and the circular frame in Fig. 4 as contributing posi-
tively to the CNN’s decision. However, PatternAttribution
does not very effectively distinguish between positive and
negative contributions in either example, because in both

cases, it assigns positive attribution to the frames that are ac-
tually contributing negatively to the CNN’s decision. Its pat-
tern correlation with the ground truth is on the order of 0.4 in
both examples.

The results of Deep Taylor and the LRPa1b0 rule are identi-
cal, since these two methods are equivalent for networks with

FIG. 4. As in Fig. 3, but for the sample 450345. The CNN has successfully classified this image to class 1; i.e., the cir-
cular frames cover more area (area: 342) than the square frames do (area: 255). XAI methods are applied to explain
the successful prediction.
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ReLU activations (Samek et al. 2016; Montavon et al. 2017).
Both methods pick up the corresponding three frames, and
pixels outside the frames receive zero attribution. However,
all frames receive positive attributions in both figures, which
is not consistent with the ground truth of attribution (the re-
sults of these two methods exhibit a correlation with the
ground truth of only about 0.1–0.2). It has recently been noted
that LRPa1b0 propagates the sign of the before-softmax value
back to the input (e.g., Kohlbrenner et al. 2020), and, thus, it
is not able to distinguish between positive and negative
contributions of different features.2 Because of this prop-
erty, LRPa1b0 is known to provide smoother (not very
noisy) results than do other LRP rules}however, with
limited local accuracy, since the negative preactivations
are not being considered in this rule [see Eq. (B6) in
appendix B]. Results from LRPz are the same as those
from the Input*Gradient since the two methods are equiva-
lent when explaining networks that use ReLU activations
(Ancona et al. 2018; 2019).

The results from LRPcomp seem to be the most consistent
and very similar to the ground truth of attribution (this
method exhibits the highest correlation with the ground truth,
on the order of 0.8–0.9). As mentioned in the previous sec-
tion, this method combines LRPa1b0 and LRPz in an attempt
to get the best from both rules: as shown in Figs. 3 and 4, it is
able to maintain local accuracy, and thus, distinguish between
positive and negative contributions (owing to the use of
LRPz), while at the same time returning smooth results, thus,
eliminating the effect of gradient shattering (owing to the
use of LRPa1b0). The rule LRPcomp/flat is shown to provide
a coarser but similar picture of attribution to the LRPcomp

(correlation with the ground truth on the order of 0.7). This
verifies arguments in previous studies (Bach et al. 2016)
that if the analyst/scientist is not interested in local accu-
racy, but they only need to obtain a coarse picture of the at-
tribution, this is a suitable rule to use. Last, the method
Deep SHAP is shown to provide attributions that are close
to the ground truth, but relatively noisier (correlation with
the ground truth on the order of 0.5–0.6). Results are similar
to the results of Input*Gradient, Integrated Gradients, and
LRPz.

In Fig. 5, we repeat the results of Fig. 4, but now we aim to
detect which features in the input made the CNN assign a
very small probability to class 2. We note that in geoscientific
applications, it is always good practice to use XAI to explain
not only the predicted class but also the rejected class(es),
since this may provide further insight. The ground truth of

attribution in Fig. 5 shows the opposite of what shown in
Fig. 4: the pixels of the square frames increase the likelihood
of class 2, while the pixels of the circular frame decrease it.
The XAI results verify most of the arguments made in the
discussion of the previous figures. First, methods like Gradi-
ent, Input*Gradient, Integrated Gradients, LRPz, and Deep
SHAP are able to disentangle the sign of the attribution
but might be partially affected by gradient shattering. The
LRPa1b0 rule provides smooth results but cannot disentangle
the sign of the attribution. Specifically, it assigns negative
attributions to all frames (similarly to PatternNet and
PatternAttribution), because the before-softmax value that
corresponds to class 2 is a negative number in this example.
Deep Taylor does not return any results, since this method
is only defined for positive network outputs (Montavon et al.
2017). Last, the method LRPcomp is again shown here to
provide the most consistent attribution relative to the ground
truth, because it is able to provide smooth results and also
disentangle the sign of the attribution.

To explore the above insights more quantitively and across
many samples we have calculated the distribution of the
correlation with the ground truth for each of the XAI attri-
bution methods (not shown). This analysis showed that
LRPcomp exhibits systematically the strongest correlation
with the ground truth, LRPa1b0 exhibits the weakest corre-
lation, while the rest of the methods fall in between, similar
to what Figs. 3–5 suggest.

Next, we explore the sensitivity of the XAI results to input
transformations. In geoscientific applications, input transfor-
mations may represent modifications of the units of an input
variable (e.g., from kelvins to degrees Celsius) or the scaling
(anomalies about zero vs raw measurements), thus, it is of
high importance to investigate their effect. To do so, we per-
form the following experiment that is inspired by Kindermans
et al. (2019): we apply a uniform shift of s 5 21 to all pixels
in all input images of the synthetic dataset. The features of
the shifted input are binary variables with X* ∈ {21, 0}d:
the pixels of the frames are equal to 0, and the nonframe
pixels are equal to 21. We then consider the already
trained CNN and simply change the biases of its first layer
to account for the shift in the input: for any j neuron in
the first hidden layer the new bias term is modified as
b*j 5 bj 2

∑
iwijs5 bj 1

∑
iwij. With this modification, the

predictions of the modified CNN (denoted CNN*) when us-
ing the shifted input (denoted X*) are the same as those of
the CNN in the original setting.3

In Fig. 6, we apply XAI methods to explain the decision strat-
egy of this modified CNN* for the same prediction as in Fig. 4.
The methods Gradient, Smooth Gradient, PatternAttribution,
LRPcomp/flat, and Deep SHAP provide similar results, which
makes them “input shift invariant” (Kindermans et al. 2019).

2 This can be explained easily by looking at the formula in
Eq. (B6) and setting a 5 1 and b 5 0 to obtain the LRPa1b0 rule:
because the ratio z1ij /z

1
j is by definition a positive number, then

the relevance of any neuron in the lower layer R(l)
i has the same

sign as the relevance of the neuron in the upper layer R(l11)
j , and

this sign is maintained and recursively propagated back to the in-
put layer. Thus, when the before-softmax value of the class that is
being explained is a positive number then the corresponding heat
map will show only nonnegative values and when it is a negative
number then the corresponding heat map will show only nonposi-
tive values.

3 Any activation value of the neurons in the first hidden layer x*j
is equal to the corresponding activation in the original setting:
x*j 5ReLU(∑iwijx

*
i 1 b*j )5ReLU[∑iwij(xi 2 1)1 bj 1

∑
iwij]5

ReLU[∑i(wijxi 2 wij) 1 bj 1
∑

iwij] 5 ReLU(∑iwijxi 1 bj)5 xj;
see also Kindermans et al. (2019).
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The reason for the invariance in their results is as follows:
(i) The gradient of a constant is zero, so methods Gradient
and Smooth Gradient are expected to be “input shift invari-
ant.” (ii) The method LRPcomp/flat applies a flat rule in the
lowest layers, which distributes relevance uniformly to any
input feature that is connected to a neuron in the upper
layer, without considering the value of preactivations [see

Eq. (B7)]. Thus, since the architecture of the modified
CNN* and all preactivations in all layers except the low-
est one are the same as in the original setting, the feature
attributions are the same. (iii) Both PatternAttribution and
Deep SHAP use the range of variability of the input fea-
tures in the training dataset to assess feature importance;
thus, the input shift is taken into account.

FIG. 5. As in Fig. 4, but here XAI methods are applied to explain why the CNN correctly predicted that class 2 is not
true (i.e., explaining the low probability that the CNN assigned to class 2).
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In contrast, Input*Gradient, Integrated Gradients, and all the
rest of the LRP rules show very different results with the shifted
input when compared with Fig. 4, with most of these methods
highlighting the perimeter of the three frames while the body
of the frames receives zero attribution. This indicates a sensi-
tivity of these methods to input transformations. In our exam-
ple, this sensitivity originates from the fact that these methods

are theoretically unable to assign attribution to a zero value in
the input (i.e., the body of the frames in Fig. 6). Indeed, the
formulas in Eqs. (B3) and (B4) in appendix B show that
Input*Gradient and Integrated Gradients (when using a blank
image as reference) always assign a zero attribution to a zero
input by construction. Similarly, all LRP rules except LRPcomp/flat

perform the relevance redistribution based on the preactivation

FIG. 6. As in Fig. 4, but after a shift of21 has been applied to the input. Also note that the ground truth of attribution
is derived using a baseline image with all feature values equal to21.

ART I F I C I AL I N TELL IGENCE FOR THE EARTH SY S TEMS VOLUME 112

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/02/23 01:42 PM UTC



value wijxi, thus zero inputs automatically receive a zero at-
tribution. For the rest of the paper, we will refer to this sys-
tematic behavior of assigning zero attribution to a zero
input and ignoring the impact it could have to the network’s
output as the “ignorant to zero input” issue. Input*Gradient
and all LRP rules except LRPcomp/flat are ignorant to zero in-
put. The ignorant-to-zero-input issue did not show up in
Figs. 3 and 4 (if anything, it worked to the advantage of these
methods), since pixels with a zero value were expected to re-
ceive zero attribution in those examples. In general, how-
ever, this issue can provide a distorted picture of the
decision strategy of the CNN. A clear example is Fig. 6,
where, according to Input*Gradient and most LRP rules, the
frames are not important to the CNN decision.4 We also note
that, if we train a completely new CNN to classify the shifted
images and use XAI to explain its predictions (see Supple-
mentary Fig. 2 in the online supplemental material), we ob-
serve very similar results with Fig. 6, which further verifies
the validity of the above remarks.

The results of this section highlight three important is-
sues of XAI methods, namely, the effect of gradient shat-
tering, the issue of disentangling the sign of the attribution,
and the ignorant-to-zero-input issue (see Table 1). All of
these issues may limit the user’s understanding of the deci-
sion-making strategy of a CNN, and no method was shown
to be optimal.

b. Climate net

In Figs. 7 and 8 , we apply the same XAI methods to ex-
plain CNN predictions for the ClimateNet dataset. For this
dataset, there is no clearly defined ground truth for the attri-
bution of the output to the input. Even though the dataset
contains labeled maps by experts (i.e., Supplementary Fig. 1d
in the online supplemental material), these cannot act as a
ground truth for the attribution, as the CNN may employ pat-
terns or climate information outside the regions of the ARs
for making its predictions. Thus, we cannot assess the XAI
fidelity for this application as we did for the synthetic dataset.
Instead, we use this dataset to examine whether, and how,
the properties and artifacts of different XAI methods that
were identified in the previous section manifest in a more
climate-related prediction setting. Furthermore, by pro-
viding this example we seek to illustrate how the knowl-
edge of relative strengths and weaknesses of each XAI
method affects our interpretation of the corresponding XAI
results.

In the specific sample that we consider, two ARs have been
detected by the expert scientists, and the CNN correctly as-
signed this input to the class of two or more ARs. In Fig. 7,
we present the XAI results that explain which features in

the first channel of the input image (the zonal wind at 850
hPa pressure level U850) the CNN used to make this pre-
diction. Similar to the previous dataset, the obtained results
are very different when using different XAI methods, which
makes the interpretation of the decision-making strategy of
the CNN challenging. First, in accordance with the remarks
of the previous section, one can see that the results of
the methods Gradient, Smooth Gradient, Input*Gradient,
Integrated Gradients, and LRPz are very noisy (Fig. 7),
and based on these methods, one cannot make any robust in-
ferences about the CNN’s strategy. For ClimateNet, the CNN
that we use is almost 2 times as deep as in the previous dataset
(see Fig. 2), and, thus, the gradient shattering has a detrimen-
tal effect on the explanations.

Focusing on the rest of the methods, PatternNet highlights
all features in the input where zonal wind is positive, indicat-
ing that these features contain important information for the
network. PatternAttribution seems to primarily highlight one
of the two wind patterns that are associated with the two
ARs. The methods Deep Taylor and LRPa1b0 provide only
positive attributions to all highlighted features (recall here
from the previous section that these methods do not disentan-
gle the sign of the attribution), and they assign the highest at-
tribution to the two positive wind patterns that are associated
with the ARs. The same features are highlighted more clearly
when using the methods LRPcomp and Deep SHAP. These
two methods are relatively more insightful, since (i) LRPcomp

is a “best practice” implementation of LRP (Kohlbrenner
et al. 2020) and it combines the strengths of the rules LRPa1b0

and LRPz, and (ii) Deep SHAP has been proven to satisfy
desirable properties of consistency, local accuracy, and miss-
ingness (Lundberg and Lee 2017), and it successfully disen-
tangles the sign of the attribution and does not exhibit the
ignorant-to-zero-input issue. Last, the results from LRPcomp/flat

show how the attribution is distributed when one considers all
three channels together; recall here that this rule applies a flat
(uniform) rule of relevance distribution in the lowest layers;
thus, the obtained heat map is determined by how relevance is
distributed spatially across the neurons in the upper layers. The
results show that the important features for this prediction
form two spatial patterns that are closely aligned with the
locations over which the two ARs were detected by the
experts (we do not wish to further assess this alignment
quantitatively since there is no exact grid-by-grid corre-
spondence between the U850 and the labeled fields). Thus,
we can conclude that the network classified this input to the
right class based on the wind features that are associated
with the labeled ARs locations, which may add to the mod-
el’s trustworthiness. The XAI results for the other two chan-
nels of V850 (meridional wind) and integrated precipitable
water are presented in Supplementary Figs. 3 and 4 in the on-
line supplemental material.

In Fig. 8, we consider the same input and use XAI to ex-
plain why the CNN assigned a small probability to the class of
zero ARs. We again observe that the effect of gradient shat-
tering is drastic and makes the results of Gradient, Smooth
Gradient, Input*Gradient, Integrated Gradients, and LRPz

4 As a second example, let us consider that we wanted to explain
the prediction of a (supposedly perfectly trained) network that
simulates the function F(X)5∑d

i51 cos (Xi) at the point x 5 0. An
ignorant-to-zero-input method would assign a zero attribution to
all input features, just because xi 5 0, ∀i. This ignores the fact that
each feature is actually contributing cos(0) 5 1 to the total sum and
leads to a distorted picture of the network’s predictive strategy.
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incomprehensible. On the basis of the rest of the methods,
and by comparing Figs. 7 and 8, results show roughly the
same patterns but with the opposite sign. This suggests that
the features that made the network be certain about the oc-
currence of two or more ARs are also the features that made
the network decide that the considered input is not likely a

simulation with zero ARs. Thus, in Fig. 8, we verify that the
CNN based its decision on features that are associated with
the two ARs.

The above results validate the conclusions of our analysis
in the previous section and show that the effects observed
for the different XAI methods for the synthetic benchmark

FIG. 7. Explanations from different XAI methods of the strategy of the CNN for the ClimateNet dataset. The CNN
has successfully classified the input image to the class of two or more ARs. XAI methods are applied to explain the
successful prediction, and results correspond to the U850 channel. For each heat map, we divided all values by the
maximum (in absolute terms) value.
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occur also for climate data and thus need to be taken into ac-
count when interpreting the results. In particular, no optimal
method exists. Thus, in typical prediction applications, in
which no ground truth of attribution exists, a more holistic ap-
proach should be taken. By considering the explanations from
many XAI methods as a whole (as in Figs. 7 and 8) and know-
ing the relative strengths and weaknesses of each one, scien-
tists may more effectively gain insights about the decision-

making strategy of the network, as opposed to the use of a
single method.

4. Conclusions

Explainable artificial intelligence has increasingly been re-
ceiving attention in the field of geoscience, as a means to ex-
plain black-box models of machine and deep learning that are

FIG. 8. As in Fig. 7, but here XAI methods are applied to explain why the CNN assigned a low probability to
the class of zero ARs.
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not inherently interpretable. Although the potential of XAI
methods has already been documented in the computer
science literature and in geosciences (McGovern et al. 2019;
Ebert-Uphoff and Hilburn 2020; Barnes et al. 2020; Toms
et al. 2020, 2021; Sonnewald and Lguensat 2021; Mayer and
Barnes 2021; Hilburn et al. 2021; Keys et al. 2021; Mamalakis
et al. 2022b), many studies have highlighted theoretical and
practical limitations (Ancona et al. 2018; Kindermans et al.
2019; Rudin 2019; Dombrowski et al. 2022; Zhou et al. 2022).
Moreover, the assessment of XAI has typically been based on
subjective criteria in the recent literature (Mamalakis et al.
2022a; Leavitt and Morcos 2020). To shed more light on the
XAI limitations and to gain insight into best practices, in this
study we considered some of the most popular XAI methods
and compared the fidelity of their explanations in applications
for convolutional neural networks relevant to geoscience.
To do so, we used a synthetic attribution benchmark, where
the ground truth of attribution is a priori known, to objec-
tively highlight relative strengths and weaknesses, and a data-
set of climate simulations to validate our insights in a more
typical prediction setting.

Our investigation revealed aspects that need to be consid-
ered when applying XAI methods. These include (i) gradient
shattering (i.e., the phenomenon of noisy patterns in the gra-
dient), the level of which is a function of the depth of the net-
work. For very deep networks, gradient shattering might lead
to overwhelmingly noisy patterns that make the explanation
of any gradient-based method incomprehensible. (ii) Many of
the considered methods are either theoretically unable or
were shown in practice to be ineffective in disentangling posi-
tive and negative contributions. This may lead to a very dis-
torted picture of what the network’s strategy is and possibly
limit trust in the predictive model itself. (iii) Some methods
automatically assign a zero attribution to zero values in the in-
put, despite the fact that in specific settings a zero input value
could be important for the prediction. We referred to this is-
sue as the ignorant-to-zero-input issue. The results of these
methods may be more informative if they are viewed as ex-
planations that correspond to a blank image baseline (i.e., an
image with only zeros). The effect and/or usefulness of assum-
ing different baselines in XAI research will be the subject of a
future study. A summary of the relative strengths and weak-
nesses that the considered methods exhibit for the types of ap-
plications in the current analysis is shown in Table 1.

Our investigation suggests that no optimal method exists
for all prediction settings and network architectures. For ex-
ample, previous studies in computer science and the geoscien-
ces have shown that for relatively shallow fully connected
networks and for physical problems where a zero input
contains no information, methods like Input*Gradient, Inte-
grated Gradients, and LRPz might perform well (Kohlbrenner
et al. 2020; Mamalakis et al. 2022a). Yet in this investigation,
we showed that for deep CNNs and/or for cases for which a
zero input might be important for the prediction, these meth-
ods might provide a distorted picture of the decision strategy
of the network. Having clarified that no universally optimal
method exists, we note that for CNN applications, one might
have relatively more good reasons to use methods like LRPcomp,

LRPcomp/flat and Deep SHAP than others. Yet, these methods
are not perfect and require different computational resources,
so we would argue that applying many methods and collec-
tively comprehending the CNN strategy (a more holistic ap-
proach) is and will be the way to go for the foreseeable future.
We conclude by saying that we envision our analysis and re-
vealed insights to highlight even more the need for rigorous
and objective assessment of XAI methods so as to successfully
implement them in geoscience and leverage machine and deep
learning for prediction.
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APPENDIX A

The Use of Additively Separable Functions for
Generating Synthetic Attribution Benchmarks and Their

Connection to Our Study

As mentioned in section 2a of the main text, an attribution
benchmark consists of a synthetic input X and a synthetic
output Y, with the latter being a known function F of the
former (Mamalakis et al. 2022a). The functional form of F
depends on what type of network one wants to benchmark
(e.g., a fully connected network, a CNN), and Mamalakis
et al. (2022a) noted that the function F can be of any arbi-
trary choice, as long as it has such a form so that the attribu-
tion of any output to the corresponding input is objectively
derivable.

Mamalakis et al. (2022a) suggested that a simple form for
F so that the above property is honored is when F is an
additively separable function, that is, there exist local func-
tions Ci, with i 5 1, 2, …, d, so that

Y 5 F(X) 5 F(X1, X2,…,Xd)
5 C1(X1) 1 C2(X2) 1 · · · 1 Cd(Xd), (A1)

where the form of Ci is chosen by the analyst depending
on what type of network they want to benchmark. The im-
portant think to notice is that because of the summation in
Eq. (A1), and for any form of Ci, the contribution of any
input feature Xi to the output yn in the sample n is by defi-
nition equal to Ci(xi,n); that is when considering a zero
baseline. This allows for deriving a ground truth of the
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attribution for any sample n, and for any input feature Xi,
and thus, a synthetic benchmark with F being an additively
separable function allows for objectively benchmarking
XAI methods.

As described in section 2a, in this study, we generated a
series of images where circular and square frames are pre-
sent, and the task was to classify each image depending on
which class of frames covers more area. This classification
task can be shown to fall under the umbrella of additively
separable functions as in Eq. (A1). Specifically, to generate
the synthetic output of the current dataset, we may follow
the framework of Mamalakis et al. (2022a), and define the
output variable Y ∈ Z

* as in Eq. (A1), but where

Ci(xi,n) 5
1; if i belongs to a square frame

21; if i belongs to a circular frame

0; otherwise

:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ (A2)

By combining Eqs. (A1) and (A2), one can quickly notice
that Y essentially represents the difference of the total area
of square frames minus the total area of the circular frames
in each image. If Y . 0, then the square frames cover more
area in the corresponding image, and if Y , 0, the circular
frames cover more area (note that during the simulation of
the synthetic dataset, samples that happen to exhibit Y 5 0
may be disregarded). Thus, the classification task is simpli-
fied to predicting the sign of the output Y. A negative sign
of Y corresponds to class 1, and a positive sign of Y corre-
sponds to class 2, as these are defined in section 2a.

The ground truth of the attribution is easily and objec-
tively derivable, following Eq. (A2). In simple terms, and in
accordance with the discussion in section 2a, for a sample
n, pixels that belong to any square frames contribute posi-
tively to the value of yn (i.e., these pixels “push” yn to have
a positive sign), whereas pixels that belong to any circular
frames contribute negatively (i.e., these pixels “push” yn to
have a negative sign). We highlight the latter rule of attri-
bution is valid when considering a blank image as the base-
line. Moreover, the contribution of each pixel to the output
Y depends on whether the pixel belongs to a circular or
square frame [see Eq. (A2)], thus, it depends on the values
of the neighboring pixels. This inherent spatial dependency
makes a CNN be the most suitable type of network to ad-
dress this classification task.

APPENDIX B

Analytical Formulas of the Considered XAI Methods

In the Gradient method (Simonyan et al. 2014), one cal-
culates the partial derivative of the network’s output with
respect to each of the input features Xi, for the specific
sample in question. The relevance (or importance) of the
feature at grid point i for the network’s prediction of sam-
ple n is

Ri,n 5
­F̂
­Xi

∣∣∣∣
Xi5xi,n

, (B1)

where F̂ is the function learned by the CNN, as an approxi-
mation to the true function F. This method estimates the
sensitivity of the network’s output to the input variable Xi.
The motivation for using the Gradient method is that if
changing the value xi,n of a grid point is shown to cause a
large change to the CNN output, then that grid point may
be relevant for the prediction. Furthermore, calculation of
the Gradient is very convenient, as it is readily available
in any network training environment, contributing to the
method’s popularity.

The Smooth Gradient sensitivity method was intro-
duced in (Smilkov et al. 2017) and is very similar to the
method Gradient except that it aims to obtain a more ro-
bust estimation of the local derivative by averaging the
gradients over a perturbed number of inputs with added
noise:

Ri,n 5
1
m

∑m
j51

­F̂
­Xi

∣∣∣∣
Xi5xi,n1ei,n,j

, (B2)

where m is the number of perturbations and ei,n,j comes
from a standard normal distribution.

As is evident from its name, the Input*Gradient method
(Shrikumar et al. 2016; 2017) multiplies the local gradient
with the input itself to get the relevance:

Ri,n 5 xi,n
­F̂
­Xi

∣∣∣∣
Xi5xi,n

: (B3)

This method quantifies the attribution of the output to the
input. Attribution methods aim to quantify the relative con-
tribution of each input feature to the output value, some-
thing that is conceptually different from the sensitivity of
the output to the input, as in the previous two methods; for
a brief explanation of the difference between attribution
and sensitivity see appendix C.

The Integrated Gradients method (Sundararajan et al.
2017) is also an attribution method similar to the Input*-
Gradient method but aims to account for the fact that in
nonlinear problems the derivative is not constant. This
method considers a reference (baseline) vector x̂ [for which
the network’s output is zero; that is, F̂ (x̂)5 0]. Then the
relevance is equal to the product of the distance of the
input from the reference point with the average of the gra-
dients at points along the straight-line path from the refer-
ence point to the input

Ri,n 5 (xi,n 2 x̂ i)
1
m

∑m
j51

­F̂
­Xi

∣∣∣∣
Xi5x̂ i1

j
m(xi,n2x̂ i)

, (B4)

where m is the number of steps in the Riemann approximation.
LRP (Bach et al. 2015; Samek et al. 2016) is an attri-

bution method that sequentially propagates the prediction
F̂ (xn) (more specifically the before-softmax value) back to
neurons of lower layers, obtaining the intermediate rele-
vance for all neurons, until the input layer is reached and
the relevance of all input features Ri,n is calculated. There are
many different rules with which this relevance propagation
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can be performed. Below we consider the most popular rules
for CNNs.

a. LRPz

In the LRPz rule, the backpropagation is performed as
follows:

R(l)
i 5

∑
j

zij
zj

R(l11)
j , (B5)

where R(l11)
j is the relevance of the neuron j at the upper

layer (l 1 1) and R(l)
i is the relevance of the neuron i at the

lower layer (l). The propagation is based on the ratio of
the localized preactivations zij 5 wijxi during prediction
time and their respective aggregation zj 5

∑
izij 1 bj in the

neuron j. Because this rule might lead to unbounded rele-
vances when zj approaches zero (Bach et al. 2015), addi-
tional advancements have been proposed.

b. LRPab

In this rule, positive and negative preactivations zij are
considered separately so that the denominators are always
nonzero:

R(l)
i 5

∑
j

a
z1ij
z1j

1 b
z2ij
z2j

( )
R(l11)

j , (B6)

where

z1ij 5
zij; zij . 0

0
and z2ij 5

0

zij; zij , 0
:

⎧⎪⎪⎨⎪⎪⎩⎧⎪⎪⎨⎪⎪⎩
In our study, we use the commonly used version of this rule
where a 5 1 and b 5 0, which considers only positive pre-
activations (Bach et al. 2015).

c. LRPcomp

Because of the different strengths and weaknesses of the
LRPz and LRPab rules that we discuss in the results sec-
tion, a composite rule that combines these two rules has
been recently suggested in the literature (Kohlbrenner et al.
2020). This composite rule essentially applies the LRPz rule
to propagate the relevance in the fully connected layers of
the CNN and applies the LRPab rule for the convolutional
layers of the CNN. The aim is to combine the strengths and
limit the effects of the weaknesses of the two rules. This rule
has been suggested as a “best practice” implementation of
LRP when explaining a deep CNN (Kohlbrenner et al. 2020).

d. LRPcomp/flat

This rule is an extension of LRPcomp. It implements the
rules LRPz and LRPab exactly the same way as the LRPcomp

rule but additionally implements a flat rule in the very lowest
layer(s). The flat rule distributes the relevance of a neuron
uniformly to all connected neurons in the lower layer. It is
designed to be used for convolutional layers and it is not
suitable for fully connected layers:

R(l)
i 5

∑
j

1∑
i

1
R(l11)

j : (B7)

The motivation behind this flat rule is that it allows the
user to modify the resolution of the heat map by changing
which layers the flat rule is applied to (e.g., only at the in-
put layer or the lowest three layers). If the user is not inter-
ested in local accuracy, but they only need to obtain a
coarse picture of the relevance, this is a suitable rule to use.
Another important aspect of this rule is that it is invariant
to any transformation of the input [see section 3 and Bach
et al. (2016)].

For each neuron at an upper layer (l 1 1), the Deep Taylor
decomposition attribution method (Montavon et al. 2017)
computes a root point x̂ji close to the input xi, for which the
neuron’s relevance is zero, and uses the difference (xi 2 x̂ji)
to estimate the relevance of the lower-layer neurons recur-
sively. The relevance redistribution is performed as follows:

R(l)
i 5

∑
j

­R(l11)
j

­xi

∣∣∣∣∣
xi5x̂ j

i

(xi 2 x̂ji), (B8)

where R(l11)
j is the relevance of the neuron j at the upper

layer (l 1 1) and R(l)
i is the relevance of the neuron i at the

lower layer (l). It has been shown in (Samek et al. 2016;
Montavon et al. 2017) that, for neural networks with ReLU
activations, Deep Taylor leads to results that are identical
to the LRPa1b0 rule.

The PatternNet and PatternAttribution methods are
based on the idea that every input consists of a signal com-
ponent (all of the information in the input that is relevant
to the prediction task) and a distractor (all of the distract-
ing information that is irrelevant to the prediction task).
Kindermans et al. (2018) argued that most existing XAI
methods do not necessarily disentangle the signal and the
distractor before attributing the output to the input. In fact,
the authors showed that even for a simple linear regression
model, the vector of weights (i.e., regression coefficients)
that is typically used to interpret the model is not necessar-
ily aligned with the direction of the signal in the input
(Kindermans et al. 2018). Thus, Kindermans et al. (2018)
argued that to explain a model one needs to develop an ap-
proach that distinguishes between the signal and the dis-
tractor in the input, and they proposed PatternNet to esti-
mate the signal in the input and PatternAttribution to then
attribute each prediction to the input. Both methods imple-
ment a layerwise propagation of the prediction back to
lower layers until the input layer is reached and the signal
or the attribution is obtained (i.e., similar to the LRP
method). The propagation rules are

s(l)i 5
∑
j

aijs
(l11)
j and (B9a)

R(l)
i 5

∑
j

wijaijR
(l11)
j (B9b)
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for PatternNet and PatternAttribution, respectively. Above,
s(l)i and R(l)

i are the signal and the attribution (relevance) of
neuron i in the layer (l). In both methods, the summation
over j considers only the neurons in the upper layer (l 1 1)
that were activated in the forward pass of the specific
prediction. The symbol wij represents the weight from
neuron i to neuron j and the vector aj 5 {aij, ∀i}T repre-
sents the direction of the signal in the neurons of the
layer (l) and the neuron j and is estimated using the
training dataset as

aj 5
E1(x, zj) 2 E1(x)E(zj)

wT
j E1(x, zj) 2 wT

j E1(x)E(zj)
, (B9c)

where wj 5 {wij, ∀i}T is the weight vector, x 5 {xj, ∀i}T is
the vector with all of the activations of the neurons i in the
layer (l) and zj is their linear projection in the neuron j.
The symbol E1 indicates that the expectation is only taken
over those training samples that correspond to positive zj.
Note that the expressions in the above ratio represent the
covariance of x and zj.

Deep SHAP is an attribution method that is based on
the use of Shapley values (Shapley 1953) and is specifically
designed for deep neural networks (Lundberg and Lee
2017). The Shapley values originate from the field of coop-
erative game theory and represent the average expected
marginal contribution of each player in a cooperative game,
after all possible combinations of players have been consid-
ered (Shapley 1953). For the importance of Shapley values
to XAI, it can be shown (Lundberg and Lee 2017) that
across all additive feature attribution methods (a general
class of attribution methods that unifies many popular XAI
methods like LRP), the only method that satisfies all de-
sired properties of local accuracy, missingness and consis-
tency [see Lundberg and Lee (2017) for details on these
properties] emerges when the feature attributions wi are
equal to the Shapley values:

wi 5
∑

SMM\{i}

S| |!(M| | 2 S| | 2 1)!
M| | [ fS⋃{i}(xS⋃{i}) 2 fS(xS)] ,

(B10)

where M is the set of all input features, M\{i} is the set M but
with the feature xi being withheld, |M| represents the number
of features in M, and the expression fS∪{i}(xS∪{i}) 2 fS(xS)
represents the net contribution (effect) of the feature xi to
the outcome of the model f, which is calculated as the differ-
ence between the model outcome when the feature xi is pre-
sent and when it is withheld. Thus, the Shapley value wi is
the (weighted) average contribution of the feature xi across
all possible subsets S M M\{i}. Because of computational con-
straints, Deep SHAP approximates the Shapley values for
the entire network by computing the Shapley values for
smaller components of the network and propagating them
backward until the input layer is reached (similar in philoso-
phy to LRP, PatternNet, and PatternAttribution).

APPENDIX C

Sensitivity versus Attribution

When explaining a black-box model to a human, one typ-
ically aims to disentangle which input features were impor-
tant/relevant for a specific prediction made by the model.
The way to define what “being an important feature”
means is not unique, and different definitions or methods to
estimate feature importance can lead to different insights.
Two of the most important categories of methods that aim
to estimate feature importance are the methods that esti-
mate sensitivity and the methods that estimate attribution.
Here we want to briefly clarify the conceptual difference
between the two.

Sensitivity refers to how sensitive the value of the output is
to a specific input feature. An obvious way to estimate sensi-
tivity is to calculate the first partial derivative of the network
function F̂ with respect to the input feature of interest. This is
what methods like Gradient and Smooth Gradient aim to do.
Attribution, on the other hand, refers to the relative contribu-
tion of a specific input feature to the output. When dealing
with complex models like deep neural networks, estimating
attribution becomes complicated and many methods like
the Layerwise Relevance Propagation, Pattern Attribution,
and Deep SHAP have been proposed for this task.

To give an illustrative example of the difference between
sensitivity and attribution, let us consider a simple non-
linear function Y 5 F(X1, X2) 5 sin(X1) 1 cos(X2). We
can easily calculate that at the point (X1, X2) 5 (0, 0), we
get Y0,0 5 F(0, 0) 5 0 1 1 5 1. If we were to explain this
output Y0,0, that is, if we were to argue about which feature
from X1, X2 was more important for it, we would get con-
ceptually and numerically different answers using a sensitiv-
ity versus an attribution perspective. In terms of sensitivity,
the output Y0,0 is more sensitive to the value of feature X1

than feature X2 because (­F/­X1)|0,0 5 cos(0) 5 1, whereas
(­F/­X2)|0,0 5 2sin(0) 5 0. In terms of attribution, the op-
posite is true, that is, the feature X2 contributes more to
prediction Y0,0 because sin(X1)|X150 5 sin(0)5 0, whereas
cos(X2)|X250 5 cos(0)5 1.

Apart from the numerical difference, the conceptual dif-
ference between the sensitivity and attribution can be more
clearly realized if we think about the units of the results in
the two cases. When estimating sensitivity, the units of the
importance or relevance are [units of output/units of input],
whereas, when estimating attribution, the units of the re-
sults are [units of output]. Thus, these two ways of explain-
ing a black-box model are conceptually (and numerically)
different, but they can both be insightful in different ways
to a human, and thus they are equally valuable.
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